Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
J Med Virol ; 95(5): e28788, 2023 05.
Article in English | MEDLINE | ID: covidwho-2326003

ABSTRACT

Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Amino Acid Substitution , Antiviral Agents
2.
Nat Commun ; 14(1): 2671, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2315617

ABSTRACT

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.


Subject(s)
COVID-19 , Animals , Cricetinae , Phylogeny , SARS-CoV-2/genetics , Amino Acid Substitution , Biological Assay , Antibodies, Neutralizing , Antibodies, Viral
3.
J Allergy Clin Immunol ; 152(1): 290-301.e7, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2284536

ABSTRACT

BACKGROUND: Predominantly antibody deficiency (PAD) is the most common category of inborn errors of immunity and is underpinned by impaired generation of appropriate antibody diversity and quantity. In the clinic, responses are interrogated by assessment of vaccination responses, which is central to many PAD diagnoses. However, the composition of the generated antibody repertoire is concealed from traditional quantitative measures of serological responses. Leveraging modern mass spectrometry-based proteomics (MS-proteomics), it is possible to elaborate the molecular features of specific antibody repertoires, which may address current limitations of diagnostic vaccinology. OBJECTIVES: We sought to evaluate serum antibody responses in patients with PAD following vaccination with a neo-antigen (severe acute respiratory syndrome coronavirus-2 vaccination) using MS-proteomics. METHODS: Following severe acute respiratory syndrome coronavirus-2 vaccination, serological responses in individuals with PAD and healthy controls (HCs) were assessed by anti-S1 subunit ELISA and neutralization assays. Purified anti-S1 subunit IgG and IgM was profiled by MS-proteomics for IGHV subfamily usage and somatic hypermutation analysis. RESULTS: Twelve patients with PAD who were vaccine-responsive were recruited with 11 matched vaccinated HCs. Neutralization and end point anti-S1 titers were lower in PAD. All subjects with PAD demonstrated restricted anti-S1 IgG antibody repertoires, with usage of <5 IGHV subfamilies (median: 3; range 2-4), compared to ≥5 for the 11 HC subjects (P < .001). IGHV3-7 utilization was far less common in patients with PAD than in HCs (2 of 12 vs 10 of 11; P = .001). Amino acid substitutions due to somatic hypermutation per subfamily did not differ between groups. Anti-S1 IgM was present in 64% and 50% of HC and PAD cohorts, respectively, and did not differ significantly between HCs and patients with PAD. CONCLUSIONS: This study demonstrates the breadth of anti-S1 antibodies elicited by vaccination at the proteome level and identifies stereotypical restriction of IGHV utilization in the IgG repertoire in patients with PAD compared with HC subjects. Despite uniformly pauci-clonal antibody repertoires some patients with PAD generated potent serological responses, highlighting a possible limitation of traditional serological techniques. These findings suggest that IgG repertoire restriction is a key feature of antibody repertoires in PAD.


Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Humans , Amino Acid Substitution , Biological Assay , Vaccination , Immunoglobulin G , Immunoglobulin M , Antibodies, Viral
4.
Microbiol Spectr ; 11(1): e0387222, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2239688

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets, with high mortality rates. To prevent or mitigate the disease, it is common practice to develop live or inactivated PEDV vaccines based on cell-adapted viral variants. Propagating wild-type PEDV in cultured cells is, however, often challenging due to the lack of knowledge about the requirements for the cell adaptation of PEDV. In the present study, by using the RNA-targeted reverse genetic system for PEDV to apply S protein swapping followed by the rescue of the recombinant viruses, three key amino acid mutations in the S protein, A605E, E633Q, and R891G, were identified, which enable attenuated PEDV strain DR13 (DR13att) to efficiently and productively infect Vero cells, in contrast to the parental DR13 strain (DR13par). The former two key mutations reside inside and in the vicinity of the receptor binding domain (RBD), respectively, while the latter occurs at the N-terminal end of the fusion peptide (FP). Besides the three key mutations, other mutations in the S protein further enhanced the infection efficiency of the recombinant viruses. We hypothesize that the three mutations changed PEDV tropism by altering the S2' cleavage site and the RBD structure. This study provides basic molecular insight into cell adaptation by PEDV, which is also relevant for vaccine design. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a lethal pathogen for newborn piglets, and an efficient vaccine is needed urgently. However, propagating wild-type PEDV in cultured cells for vaccine development is still challenging due to the lack of knowledge about the mechanism of the cell adaptation of PEDV. In this study, we found that three amino acid mutations, A605E, E633Q, and R891G, in the spike protein of the Vero cell-adapted PEDV strain DR13att were critical for its cell adaptation. After analyzing the mutation sites in the spike protein, we hypothesize that the cell adaptation of DR13att was achieved by altering the S2' cleavage site and the RBD structure. This study provides new molecular insight into the mechanism of PEDV culture adaptation and new strategies for PEDV vaccine design.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Vero Cells , Porcine epidemic diarrhea virus/genetics , Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Coronavirus Infections/veterinary , Coronavirus Infections/genetics , Swine Diseases/prevention & control
5.
J Biol Chem ; 299(2): 102790, 2023 02.
Article in English | MEDLINE | ID: covidwho-2238444

ABSTRACT

3-Chymotrypsin-like protease (3CLpro) is a promising drug target for coronavirus disease 2019 and related coronavirus diseases because of the essential role of this protease in processing viral polyproteins after infection. Understanding the detailed catalytic mechanism of 3CLpro is essential for designing effective inhibitors of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular dynamics studies have suggested pH-dependent conformational changes of 3CLpro, but experimental pH profiles of SARS-CoV-2 3CLpro and analyses of the conserved active-site histidine residues have not been reported. In this work, pH-dependence studies of the kinetic parameters of SARS-CoV-2 3CLpro revealed a bell-shaped pH profile with 2 pKa values (6.9 ± 0.1 and 9.4 ± 0.1) attributable to ionization of the catalytic dyad His41 and Cys145, respectively. Our investigation of the roles of conserved active-site histidines showed that different amino acid substitutions of His163 produced inactive enzymes, indicating a key role of His163 in maintaining catalytically active SARS-CoV-2 3CLpro. By contrast, the H164A and H172A mutants retained 75% and 26% of the activity of WT, respectively. The alternative amino acid substitutions H172K and H172R did not recover the enzymatic activity, whereas H172Y restored activity to a level similar to that of the WT enzyme. The pH profiles of H164A, H172A, and H172Y were similar to those of the WT enzyme, with comparable pKa values for the catalytic dyad. Taken together, the experimental data support a general base mechanism of SARS-CoV-2 3CLpro and indicate that the neutral states of the catalytic dyad and active-site histidine residues are required for maximum enzyme activity.


Subject(s)
Biocatalysis , Coronavirus 3C Proteases , Histidine , SARS-CoV-2 , Humans , Histidine/genetics , Histidine/metabolism , Hydrogen-Ion Concentration , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Catalytic Domain , Kinetics , Amino Acid Substitution
6.
Viruses ; 15(2)2023 01 23.
Article in English | MEDLINE | ID: covidwho-2216957

ABSTRACT

The Omicron variant is currently ravaging the world, raising serious concern globally. Monitoring genomic variations and determining their influence on biological features are critical for tracing its ongoing transmission and facilitating effective measures. Based on large-scale sequences from different continents, this study found that: (i) The genetic diversity of Omicron is much lower than that of the Delta variant. Still, eight deletions (Del 1-8) and 1 insertion, as well as 130 SNPs, were detected on the Omicron genomes, with two deletions (Del 3 and 4) and 38 SNPs commonly detected on all continents and exhibiting high-occurring frequencies. (ii) Four groups of tightly linked SNPs (linkage I-IV) were detected, among which linkage I, containing 38 SNPs, with 6 located in the RBD, increased its occurring frequency remarkably over time. (iii) The third codons of the Omicron shouldered the most mutation pressures, while the second codons presented the least flexibility. (iv) Four major mutants with amino acid substitutions in the RBD were detected, and further structural analysis suggested that the substitutions did not alter the viral receptor binding ability greatly. It was inferred that though the Omicron genome harbored great changes in antigenicity and remarkable ability to evade immunity, it was immune-pressure selected. This study tracked mutational signatures of Omicron variant and the potential biological significance of the SNPs, and the linkages await further functional verification.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Mutation , Amino Acid Substitution
7.
Sci Rep ; 12(1): 20662, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2133650

ABSTRACT

Alaska has the lowest population density in the United States (US) with a mix of urban centers and isolated rural communities. Alaska's distinct population dynamics compared to the contiguous US may have contributed to unique patterns of SARS-CoV-2 variants observed in early 2021. Here we examined 2323 SARS-CoV-2 genomes from Alaska and 278,635 from the contiguous US collected from December 2020 through June 2021 because of the notable emergence and spread of lineage B.1.1.519 in Alaska. We found that B.1.1.519 was consistently detected from late January through June of 2021 in Alaska with a peak prevalence in April of 77.9% unlike the rest of the US at 4.6%. The earlier emergence of B.1.1.519 coincided with a later peak of Alpha (B.1.1.7) compared to the contiguous US. We also observed differences in variant composition over time between the two most populated regions of Alaska and a modest increase in COVID-19 cases during the peak incidence of B.1.1.519. However, it is difficult to disentangle how social dynamics conflated changes in COVID-19 during this time. We suggest that the viral characteristics, such as amino acid substitutions in the spike protein, likely contributed to the unique spread of B.1.1.519 in Alaska.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Alaska/epidemiology , COVID-19/epidemiology , Amino Acid Substitution
8.
J Virol ; 96(20): e0116222, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2063976

ABSTRACT

Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Immune Sera , Amino Acids/genetics , Nucleotides , Mutation
9.
J Biol Chem ; 298(6): 102023, 2022 06.
Article in English | MEDLINE | ID: covidwho-1930937

ABSTRACT

3C-like protease (3CLpro) processes and liberates functional viral proteins essential for the maturation and infectivity of severe acute respiratory syndrome coronavirus 2, the virus responsible for COVID-19. It has been suggested that 3CLpro is catalytically active as a dimer, making the dimerization interface a target for antiviral development. Guided by structural analysis, here we introduced single amino acid substitutions at nine residues at three key sites of the dimer interface to assess their impact on dimerization and activity. We show that at site 1, alanine substitution of S1 or E166 increased by twofold or reduced relative activity, respectively. At site 2, alanine substitution of S10 or E14 eliminated activity, whereas K12A exhibited ∼60% relative activity. At site 3, alanine substitution of R4, E290, or Q299 eliminated activity, whereas S139A exhibited 46% relative activity. We further found that the oligomerization states of the dimer interface mutants varied; the inactive mutants R4A, R4Q, S10A/C, E14A/D/Q/S, E290A, and Q299A/E were present as dimers, demonstrating that dimerization is not an indication of catalytically active 3CLpro. In addition, present mostly as monomers, K12A displayed residual activity, which could be attributed to the conspicuous amount of dimer present. Finally, differential scanning calorimetry did not reveal a direct relationship between the thermodynamic stability of mutants with oligomerization or catalytic activity. These results provide insights on two allosteric sites, R4/E290 and S10/E14, that may promote the design of antiviral compounds that target the dimer interface rather than the active site of severe acute respiratory syndrome coronavirus 2 3CLpro.


Subject(s)
Coronavirus 3C Proteases , SARS-CoV-2 , Alanine/chemistry , Amino Acid Substitution , Antiviral Agents/chemistry , Coronavirus 3C Proteases/metabolism , Protein Multimerization , SARS-CoV-2/enzymology
10.
Sci Rep ; 12(1): 1299, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1908217

ABSTRACT

Recently, an international randomized controlled clinical trial showed that patients with SARS-CoV-2 infection treated orally with the 3-chymotrypsin-like protease (3CLpro) inhibitor PF-07321332 within three days of symptom onset showed an 89% lower risk of COVID-19-related hospital admission/ death from any cause as compared with the patients who received placebo. Lending support to this critically important result of the aforementioned trial, we demonstrated in our study that patients infected with a SARS-Cov-2 sub-lineage (B.1.1.284) carrying the Pro108Ser mutation in 3CLpro tended to have a comparatively milder clinical course (i.e., a smaller proportion of patients required oxygen supplementation during the clinical course) than patients infected with the same sub-lineage of virus not carrying the mutation. Characterization of the mutant 3CLpro revealed that the Kcat/Km of the 3CLpro enzyme containing Ser108 was 58% lower than that of Pro108 3CLpro. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) revealed that the reduced activity was associated with structural perturbation surrounding the substrate-binding region of the enzyme, which is positioned behind and distant from the 108th amino acid residue. Our findings of the attenuated clinical course of COVID-19 in patients infected with SARS-CoV-2 strains with reduced 3CLpro enzymatic activity greatly endorses the promising result of the aforementioned clinical trial of the 3CLpro inhibitor.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Mutation, Missense , Patient Acuity , Adult , Aged , Amino Acid Substitution , COVID-19/enzymology , COVID-19/genetics , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Female , Humans , Male , Middle Aged
11.
Viruses ; 14(4)2022 03 29.
Article in English | MEDLINE | ID: covidwho-1834923

ABSTRACT

In order to gain a deeper understanding of the recently emerged and highly divergent Omicron variant of concern (VoC), a study of amino acid substitution (AAS) patterns was performed and compared with those of the other four successful variants of concern (Alpha, Beta, Gamma, Delta) and one closely related variant of interest (VoI-Lambda). The Spike ORF consistently emerges as an AAS hotspot in all six lineages, but in Omicron this enrichment is significantly higher. The progenitors of each of these VoC/VoI lineages underwent positive selection in the Spike ORF. However, once they were established, their Spike ORFs have been undergoing purifying selection, despite the application of global vaccination schemes from 2021 onwards. Our analyses reject the hypothesis that the heavily mutated receptor binding domain (RBD) of the Omicron Spike was introduced via recombination from another closely related Sarbecovirus. Thus, successive point mutations appear as the most parsimonious scenario. Intriguingly, in each of the six lineages, we observed a significant number of AAS wherein the new residue is not present at any homologous site among the other known Sarbecoviruses. Such AAS should be further investigated as potential adaptations to the human host. By studying the phylogenetic distribution of AAS shared between the six lineages, we observed that the Omicron (BA.1) lineage had the highest number (8/10) of recurrent mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acid Substitution , Humans , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
PLoS One ; 17(4): e0264723, 2022.
Article in English | MEDLINE | ID: covidwho-1793509

ABSTRACT

The serine proteases neutrophil elastase (NE), proteinase 3 (PR3), cathepsin G (CatG), and neutrophil serine protease 4 (NSP4) are secreted by activated neutrophils as a part of the innate immune response against invading pathogens. However, these serine proteases might be adopted by viruses to mediate viral surface protein priming resulting in host cell entrance and productive infection. Indeed, NE and PR3 hydrolyze the scissile peptide bond within the proteolytically sensitive polybasic sequence of the activation loop of SARS-CoV-2 located at the S1/S2 interface of the Spike (S) protein; an amino acid motif which differs from SARS-CoV-1. The occurrence of novel SARS-CoV-2 variants and substitution of distinct amino acids at the polybasic sequence prompts serious concerns regarding increased transmissibility. We propose that a novel cleavage site by CatG of the Omicron variant and the increased substrate turnover of the Delta variant by furin within the polybasic sequence should be considered for increased transmission of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acid Substitution , Cathepsin G/genetics , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
13.
Commun Biol ; 5(1): 285, 2022 03 29.
Article in English | MEDLINE | ID: covidwho-1768863

ABSTRACT

We build statistical models to describe the substitution process in the SARS-CoV-2 as a function of explanatory factors describing the sequence, its function, and more. These models serve two different purposes: first, to gain knowledge about the evolutionary biology of the virus; and second, to predict future mutations in the virus, in particular, non-synonymous amino acid substitutions creating new variants. We use tens of thousands of publicly available SARS-CoV-2 sequences and consider tens of thousands of candidate models. Through a careful validation process, we confirm that our chosen models are indeed able to predict new amino acid substitutions: candidates ranked high by our model are eight times more likely to occur than random amino acid changes. We also show that named variants were highly ranked by our models before their appearance, emphasizing the value of our models for identifying likely variants and potentially utilizing this knowledge in vaccine design and other aspects of the ongoing battle against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acid Substitution , COVID-19/genetics , Humans , Models, Statistical , Mutation, Missense , SARS-CoV-2/genetics
14.
PLoS One ; 17(3): e0265748, 2022.
Article in English | MEDLINE | ID: covidwho-1753205

ABSTRACT

The new coronavirus infection (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be fatal, and several variants of SARS-CoV-2 with mutations of the receptor-binding domain (RBD) have increased avidity for human cell receptors. A single missense mutation of U to G at nucleotide position 1355 (U1355G) in the spike (S) gene changes leucine to arginine (L452R) in the spike protein. This mutation has been observed in the India and California strains (B.1.617 and B.1.427/B.1.429, respectively). Control of COVID-19 requires rapid and reliable detection of SARS-CoV-2. Therefore, we established a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay plus a bioluminescent assay in real-time (BART) to detect SARS-CoV-2 and the L452R spike mutation. The specificity and sensitivity of the RT-LAMP-BART assay was evaluated using synthetic RNAs including target sequences and RNA-spiked clinical nasopharyngeal and saliva specimens as well as reference strains representing five viral and four bacterial pathogens. The novel RT-LAMP-BART assay to detect SARS-CoV-2 was highly specific compared to the conventional real-time RT-PCR. Within 25 min, the RT-LAMP-BART assay detected 80 copies of the target gene in a sample, whereas the conventional real-time RT-PCR method detected 5 copies per reaction within 130 min. Using RNA-spiked specimens, the sensitivity of the RT-LAMP-BART assay was slightly attenuated compared to purified RNA as a template. The results were identical to those of the conventional real-time RT-PCR method. Furthermore, using a peptide nucleic acid (PNA) probe, the RT-LAMP-BART method correctly identified the L452R spike mutation. This is the first report describes RT-LAMP-BART as a simple, inexpensive, rapid, and useful assay for detection of SARS-CoV-2, its variants of concern, and for screening of COVID-19.


Subject(s)
Amino Acid Substitution , COVID-19/diagnosis , Peptide Nucleic Acids/genetics , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/genetics , Binding Sites , California , Early Diagnosis , Humans , India , Limit of Detection , Luminescent Measurements , Molecular Diagnostic Techniques , Mutation, Missense , Nucleic Acid Amplification Techniques , Real-Time Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry
15.
Nat Commun ; 13(1): 1152, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730284

ABSTRACT

In spring 2021, an increasing number of infections was observed caused by the hitherto rarely described SARS-CoV-2 variant A.27 in south-west Germany. From December 2020 to June 2021 this lineage has been detected in 31 countries. Phylogeographic analyses of A.27 sequences obtained from national and international databases reveal a global spread of this lineage through multiple introductions from its inferred origin in Western Africa. Variant A.27 is characterized by a mutational pattern in the spike gene that includes the L18F, L452R and N501Y spike amino acid substitutions found in various variants of concern but lacks the globally dominant D614G. Neutralization assays demonstrate an escape of A.27 from convalescent and vaccine-elicited antibody-mediated immunity. Moreover, the therapeutic monoclonal antibody Bamlanivimab and partially the REGN-COV2 cocktail fail to block infection by A.27. Our data emphasize the need for continued global monitoring of novel lineages because of the independent evolution of new escape mutations.


Subject(s)
COVID-19/immunology , COVID-19/virology , Pandemics , SARS-CoV-2/immunology , Africa, Western/epidemiology , Amino Acid Substitution , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antiviral Agents/pharmacology , COVID-19/transmission , Drug Combinations , Germany/epidemiology , Global Health , Humans , Immune Evasion/genetics , Mutation , Phylogeography , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
16.
Nat Commun ; 13(1): 871, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692611

ABSTRACT

The SARS-CoV-2 Delta variant is currently the dominant circulating strain in the world. Uncovering the structural basis of the enhanced transmission and altered immune sensitivity of Delta is particularly important. Here we present cryo-EM structures revealing two conformational states of Delta spike and S/ACE2 complex in four states. Our cryo-EM analysis suggests that RBD destabilizations lead to population shift towards the more RBD-up and S1 destabilized fusion-prone state, beneficial for engagement with ACE2 and shedding of S1. Noteworthy, we find the Delta T478K substitution plays a vital role in stabilizing and reshaping the RBM loop473-490, enhancing interaction with ACE2. Collectively, increased propensity for more RBD-up states and the affinity-enhancing T478K substitution together contribute to increased ACE2 binding, providing structural basis of rapid spread of Delta. Moreover, we identify a previously generated MAb 8D3 as a cross-variant broadly neutralizing antibody and reveal that 8D3 binding induces a large K478 side-chain orientation change, suggesting 8D3 may use an "induced-fit" mechanism to tolerate Delta T478K mutation. We also find that all five RBD-targeting MAbs tested remain effective on Delta, suggesting that Delta well preserves the neutralizing antigenic landscape in RBD. Our findings shed new lights on the pathogenicity and antibody neutralization of Delta.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , COVID-19/transmission , Protein Domains/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/genetics , Antibodies, Viral/immunology , Binding Sites , Broadly Neutralizing Antibodies/immunology , Cryoelectron Microscopy , Humans , Immunoglobulin Fab Fragments/immunology , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
17.
Microbiol Spectr ; 10(1): e0068121, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1691411

ABSTRACT

The N501Y amino acid mutation caused by a single point substitution A23063T in the spike gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is possessed by three variants of concern (VOCs), B.1.1.7, B.1.351, and P.1. A rapid screening tool using this mutation is important for surveillance during the coronavirus disease 2019 (COVID-19) pandemic. We developed and validated a single nucleotide polymorphism real-time reverse transcription PCR assay using allelic discrimination of the spike gene N501Y mutation to screen for potential variants of concern and differentiate them from SARS-CoV-2 lineages without the N501Y mutation. A total of 160 clinical specimens positive for SARS-CoV-2 were characterized as mutant (N501Y) or N501 wild type by Sanger sequencing and were subsequently tested with the N501Y single nucleotide polymorphism real-time reverse transcriptase PCR assay. Our assay, compared to Sanger sequencing for single nucleotide polymorphism detection, demonstrated positive percent agreement of 100% for all 57 specimens displaying the N501Y mutation, which were confirmed by Sanger sequencing to be typed as A23063T, including one specimen with mixed signal for wild type and mutant. Negative percent agreement was 100% in all 103 specimens typed as N501 wild type, with A23063 identified as wild type by Sanger sequencing. The identification of circulating SARS-CoV-2 lineages carrying an N501Y mutation is critical for surveillance purposes. Current identification methods rely primarily on Sanger sequencing or whole-genome sequencing, which are time consuming, labor intensive, and costly. The assay described herein is an efficient tool for high-volume specimen screening for SARS-CoV-2 VOCs and for selecting specimens for confirmatory Sanger or whole-genome sequencing. IMPORTANCE During the coronavirus disease 2019 (COVID-19) pandemic, several variants of concern (VOCs) have been detected, for example, B.1.1.7, B.1.351, P.1, and B.1.617.2. The VOCs pose a threat to public health efforts to control the spread of the virus. As such, surveillance and monitoring of these VOCs is of the utmost importance. Our real-time RT-PCR assay helps with surveillance by providing an easy method to quickly survey SARS-CoV-2 specimens for VOCs carrying the N501Y single nucleotide polymorphism (SNP). Samples that test positive for the N501Y mutation in the spike gene with our assay can be sequenced to identify the lineage. Thus, our assay helps to focus surveillance efforts and decrease turnaround times.


Subject(s)
COVID-19/diagnosis , Mutation, Missense , Point Mutation , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Alleles , Amino Acid Substitution , COVID-19/epidemiology , COVID-19/virology , Genes, Viral , Humans , Mass Screening , Ontario/epidemiology , Polymorphism, Single Nucleotide , Population Surveillance , Prevalence , Reproducibility of Results , Sensitivity and Specificity
18.
Front Immunol ; 12: 830527, 2021.
Article in English | MEDLINE | ID: covidwho-1686478

ABSTRACT

The new SARS-CoV-2 variant of concern "Omicron" was recently spotted in South Africa and spread quickly around the world due to its enhanced transmissibility. The variant became conspicuous as it harbors more than 30 mutations in the Spike protein with 15 mutations in the receptor-binding domain (RBD) alone, potentially dampening the potency of therapeutic antibodies and enhancing the ACE2 binding. More worrying, Omicron infections have been reported in vaccinees in South Africa and Hong Kong, and that post-vaccination sera poorly neutralize the new variant. Here, we investigated the binding strength of Omicron with ACE2 and monoclonal antibodies that are either approved by the FDA for COVID-19 therapy or undergoing phase III clinical trials. Computational mutagenesis and free energy perturbation could confirm that Omicron RBD binds ACE2 ~2.5 times stronger than prototype SARS-CoV-2. Notably, three substitutions, i.e., T478K, Q493K, and Q498R, significantly contribute to the binding energies and almost doubled the electrostatic potential (ELE) of the RBDOmic-ACE2 complex. Omicron also harbors E484A substitution instead of the E484K that helped neutralization escape of Beta, Gamma, and Mu variants. Together, T478K, Q493K, Q498R, and E484A substitutions contribute to a significant drop in the ELE between RBDOmic-mAbs, particularly in etesevimab, bamlanivimab, and CT-p59. AZD1061 showed a slight drop in ELE and sotrovimab that binds a conserved epitope on the RBD; therefore, it could be used as a cocktail therapy in Omicron-driven COVID-19. In conclusion, we suggest that the Spike mutations prudently devised by the virus facilitate the receptor binding, weakening the mAbs binding to escape the immune response.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Viral , COVID-19 Drug Treatment , COVID-19 , Molecular Dynamics Simulation , Mutation, Missense , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/genetics , COVID-19/immunology , Humans , Immune Evasion , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
Science ; 375(6583): 864-868, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1650843

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern evades antibody-mediated immunity that comes from vaccination or infection with earlier variants due to accumulation of numerous spike mutations. To understand the Omicron antigenic shift, we determined cryo-electron microscopy and x-ray crystal structures of the spike protein and the receptor-binding domain bound to the broadly neutralizing sarbecovirus monoclonal antibody (mAb) S309 (the parent mAb of sotrovimab) and to the human ACE2 receptor. We provide a blueprint for understanding the marked reduction of binding of other therapeutic mAbs that leads to dampened neutralizing activity. Remodeling of interactions between the Omicron receptor-binding domain and human ACE2 likely explains the enhanced affinity for the host receptor relative to the ancestral virus.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/chemistry , Immune Evasion , Receptors, Coronavirus/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Antigenic Drift and Shift , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains/genetics , Protein Interaction Domains and Motifs/genetics , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
20.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1642083

ABSTRACT

Adenosine deaminases acting on RNA (ADAR) are RNA-editing enzymes that may restrict viral infection. We have utilized deep sequencing to determine adenosine to guanine (A→G) mutations, signifying ADAR activity, in clinical samples retrieved from 93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients in the early phase of the COVID-19 pandemic. A→G mutations were detected in 0.035% (median) of RNA residues and were predominantly nonsynonymous. These mutations were rarely detected in the major viral population but were abundant in minor viral populations in which A→G was more prevalent than any other mutation (P < 0.001). The A→G substitutions accumulated in the spike protein gene at positions corresponding to amino acids 505 to 510 in the receptor binding motif and at amino acids 650 to 655. The frequency of A→G mutations in minor viral populations was significantly associated with low viral load (P < 0.001). We additionally analyzed A→G mutations in 288,247 SARS-CoV-2 major (consensus) sequences representing the dominant viral population. The A→G mutations observed in minor viral populations in the initial patient cohort were increasingly detected in European consensus sequences between March and June 2020 (P < 0.001) followed by a decline of these mutations in autumn and early winter (P < 0.001). We propose that ADAR-induced deamination of RNA is a significant source of mutated SARS-CoV-2 and hypothesize that the degree of RNA deamination may determine or reflect viral fitness and infectivity.


Subject(s)
Adenosine Deaminase/genetics , COVID-19/epidemiology , Point Mutation , RNA Editing , RNA, Viral/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adenosine/metabolism , Adenosine Deaminase/metabolism , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , COVID-19/genetics , COVID-19/transmission , COVID-19/virology , Deamination , Female , Genetic Fitness , Genome, Viral , Guanine/metabolism , Host-Pathogen Interactions/genetics , Humans , Male , Middle Aged , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Sweden/epidemiology , Viral Load , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL